Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38612567

ABSTRACT

Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.


Subject(s)
Carcinoma, Hepatocellular , Colonic Neoplasms , Liver Neoplasms , MicroRNAs , Humans , Autophagy/genetics , MicroRNAs/genetics , Membrane Proteins
2.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629161

ABSTRACT

Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.


Subject(s)
Membrane Proteins , Neoplasms , Protein Processing, Post-Translational , Humans , Autophagy/genetics , Macroautophagy , Membrane Proteins/metabolism , Ubiquitin , Ubiquitination
3.
J Vis Exp ; (194)2023 04 28.
Article in English | MEDLINE | ID: mdl-37184277

ABSTRACT

Autophagy is a specialized catabolic process that selectively degrades cytoplasmic components, including proteins and damaged organelles. Autophagy allows cells to physiologically respond to stress stimuli and, thus, maintain cellular homeostasis. Cancer cells might modulate their autophagy levels to adapt to adverse conditions such as hypoxia, nutrient deficiency, or damage caused by chemotherapy. Ductal pancreatic adenocarcinoma is one of the deadliest types of cancer. Pancreatic cancer cells have high autophagy activity due to the transcriptional upregulation and post-translational activation of autophagy proteins. Here, the PANC-1 cell line was used as a model of pancreatic human cancer cells, and the AR42J pancreatic acinar cell line was used as a physiological model of highly differentiated mammalian cells. This study used the immunofluorescence of microtubule-associated protein light chain 3 (LC3) as an indicator of the status of autophagy activation. LC3 is an autophagy protein that, in basal conditions, shows a diffuse pattern of distribution in the cytoplasm (known as LC3-I in this condition). Autophagy induction triggers the conjugation of LC3 to phosphatidylethanolamine on the surface of newly formed autophagosomes to form LC3-II, a membrane-bound protein that aids in the formation and expansion of autophagosomes. To quantify the number of labeled autophagic structures, the open-source software FIJI was utilized with the aid of the "3D Objects Counter" tool. The measure of the autophagic levels both in physiological conditions and in cancer cells allows us to study the modulation of autophagy under diverse conditions such as hypoxia, chemotherapy treatment, or the knockdown of certain proteins.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Humans , HeLa Cells , Autophagy/physiology , Microtubule-Associated Proteins/metabolism , Fluorescent Antibody Technique , Hypoxia , Mammals/metabolism , Pancreatic Neoplasms
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902354

ABSTRACT

The coronavirus disease pandemic, which profoundly reshaped the world in 2019 (COVID-19), and is currently ongoing, has affected over 200 countries, caused over 500 million cumulative cases, and claimed the lives of over 6.4 million people worldwide as of August 2022. The causative agent is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Depicting this virus' life cycle and pathogenic mechanisms, as well as the cellular host factors and pathways involved during infection, has great relevance for the development of therapeutic strategies. Autophagy is a catabolic process that sequesters damaged cell organelles, proteins, and external invading microbes, and delivers them to the lysosomes for degradation. Autophagy would be involved in the entry, endo, and release, as well as the transcription and translation, of the viral particles in the host cell. Secretory autophagy would also be involved in developing the thrombotic immune-inflammatory syndrome seen in a significant number of COVID-19 patients that can lead to severe illness and even death. This review aims to review the main aspects that characterize the complex and not yet fully elucidated relationship between SARS-CoV-2 infection and autophagy. It briefly describes the key concepts regarding autophagy and mentions its pro- and antiviral roles, while also noting the reciprocal effect of viral infection in autophagic pathways and their clinical aspects.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Autophagy , Antiviral Agents/pharmacology , Lysosomes/metabolism
5.
Adv Protein Chem Struct Biol ; 132: 175-197, 2022.
Article in English | MEDLINE | ID: mdl-36088075

ABSTRACT

The exocrine pancreas produces enzymes involved in the digestive process whereas endocrine pancreas mainly regulates glucose metabolism. Diseases of the exocrine pancreas are characterized by high morbidity and mortality. Acute pancreatitis is a painful disease in which pancreatic secretory proteins are prematurely activated causing the digestion of the gland. Pancreatic adenocarcinoma is one of the most malignant cancers due to its resistance to treatment, its late diagnosis and high capacity for metastasis. Autophagy is a catabolic process that aims at degrading cytoplasmic contents and damaged organelles, to preserve cell viability and homeostasis. VMP1 is a transmembrane protein that plays a key role in triggering autophagy and being part of the autophagosome membrane. A specific type of selective autophagy pathway called zymophagy protects the pancreas against self-digestion in the setting of acute pancreatitis by sequestering intracellularly activated zymogen granules. Mitophagy is also responsible for maintaining pancreatitis as a mild disease by preserving mitochondrial function. Dysregulation of these selective autophagic processes by pancreatitis itself constitutes a risk factor for development of severe disease. In pancreatic adenocarcinoma, VMP1 mediated autophagy promotes cancer cell survival and resistance to chemotherapy. Therefore, it is relevant to highlight a role for controlling VMP1 expression and targeting VMP1 molecular pathways to improve exocrine pancreatic diseases prognosis.


Subject(s)
Adenocarcinoma/metabolism , Autophagy , Membrane Proteins/metabolism , Pancreatic Neoplasms , Acute Disease , Adenocarcinoma/pathology , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatitis/metabolism , Pancreatic Neoplasms
6.
Cells ; 10(9)2021 09 21.
Article in English | MEDLINE | ID: mdl-34572148

ABSTRACT

Diabetic kidney disease (DKD) is a frequent, potentially devastating complication of diabetes mellitus. Several factors are involved in its pathophysiology. At a cellular level, diabetic kidney disease is associated with many structural and functional alterations. Autophagy is a cellular mechanism that transports intracytoplasmic components to lysosomes to preserve cellular function and homeostasis. Autophagy integrity is essential for cell homeostasis, its alteration can drive to cell damage or death. Diabetic kidney disease is associated with profound autophagy dysregulation. Autophagy rate and flux alterations were described in several models of diabetic kidney disease. Some of them are closely linked with disease progression and severity. Some antidiabetic agents have shown significant effects on autophagy. A few of them have also demonstrated to modify disease progression and improved outcomes in affected patients. Other drugs also target autophagy and are being explored for clinical use in patients with diabetic kidney disease. The modulation of autophagy could be relevant for the pharmacological treatment and prevention of this disease in the future. Therefore, this is an evolving area that requires further experimental and clinical research. Here we discuss the relationship between autophagy and Diabetic kidney disease and the potential value of autophagy modulation as a target for pharmacological intervention.


Subject(s)
Autophagy/physiology , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/therapy , Autophagy/drug effects , Diabetes Complications/physiopathology , Diabetes Complications/therapy , Diabetes Mellitus/drug therapy , Diabetes Mellitus/physiopathology , Diabetic Nephropathies/metabolism , Humans , Hypoglycemic Agents/pharmacology
7.
Front Cell Dev Biol ; 9: 640094, 2021.
Article in English | MEDLINE | ID: mdl-33816487

ABSTRACT

Mitophagy and zymophagy are selective autophagy pathways early induced in acute pancreatitis that may explain the mild, auto limited, and more frequent clinical presentation of this disease. Adequate mitochondrial bioenergetics is necessary for cellular restoration mechanisms that are triggered during the mild disease. However, mitochondria and zymogen contents are direct targets of damage in acute pancreatitis. Cellular survival depends on the recovering possibility of mitochondrial function and efficient clearance of damaged mitochondria. This work aimed to analyze mitochondrial dynamics and function during selective autophagy in pancreatic acinar cells during mild experimental pancreatitis in rats. Also, using a cell model under the hyperstimulation of the G-coupled receptor for CCK (CCK-R), we aimed to investigate the mechanisms involved in these processes in the context of zymophagy. We found that during acute pancreatitis, mitochondrial O2 consumption and ATP production significantly decreased early after induction of acute pancreatitis, with a consequent decrease in the ATP/O ratio. Mitochondrial dysfunction was accompanied by changes in mitochondrial dynamics evidenced by optic atrophy 1 (OPA-1) and dynamin-related protein 1 (DRP-1) differential expression and ultrastructural features of mitochondrial fission, mitochondrial elongation, and mitophagy during the acute phase of experimental mild pancreatitis in rats. Mitophagy was also evaluated by confocal assay after transfection with the pMITO-RFP-GFP plasmid that specifically labels autophagic degradation of mitochondria and the expression and redistribution of the ubiquitin ligase Parkin1. Moreover, we report for the first time that vacuole membrane protein-1 (VMP1) is involved and required in the mitophagy process during acute pancreatitis, observable not only by repositioning around specific mitochondrial populations, but also by detection of mitochondria in autophagosomes specifically isolated with anti-VMP1 antibodies as well. Also, VMP1 downregulation avoided mitochondrial degradation confirming that VMP1 expression is required for mitophagy during acute pancreatitis. In conclusion, we identified a novel DRP1-Parkin1-VMP1 selective autophagy pathway, which mediates the selective degradation of damaged mitochondria by mitophagy in acute pancreatitis. The understanding of the molecular mechanisms involved to restore mitochondrial function, such as mitochondrial dynamics and mitophagy, could be relevant in the development of novel therapeutic strategies in acute pancreatitis.

8.
Article in English | MEDLINE | ID: mdl-32655498

ABSTRACT

Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.


Subject(s)
Autophagy , Deoxycytidine/analogs & derivatives , E1A-Associated p300 Protein/metabolism , E2F1 Transcription Factor/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/metabolism , Antimetabolites, Antineoplastic/pharmacology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Deoxycytidine/pharmacology , E1A-Associated p300 Protein/genetics , E2F1 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Cells, Cultured , Gemcitabine
9.
Methods Mol Biol ; 1880: 541-554, 2019.
Article in English | MEDLINE | ID: mdl-30610721

ABSTRACT

Acute pancreatitis is one of the first pathological processes where autophagy has been described in a human tissue. Autophagy, autodigestion, and cell death are early cellular events in acute pancreatitis. Recent advances in understanding autophagy highlight its importance in pathological conditions. However, methods for monitoring autophagic activity during complex diseases, involving highly differentiated secretory cells, are complicated, and the results are sometimes misinterpreted. Here, we describe methods used to identify autophagic structures and to measure autophagic flux in cultured cell models and animal models of pancreatitis. We also briefly describe the pancreas specific autophagy mouse model that was useful to understand the actual role of autophagy in pancreatitis and to identify a novel selective autophagy pathway named zymophagy. Lastly, we describe the immunomagnetic isolation of autophagosomes and the detection of autophagy in pancreatic tissue samples derived from humans.


Subject(s)
Autophagosomes/pathology , Autophagy , Enzyme Precursors/metabolism , Pancreas/pathology , Pancreatitis/pathology , Acinar Cells , Animals , Autophagosomes/ultrastructure , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line , Ceruletide/toxicity , Disease Models, Animal , Humans , Lysosomes/metabolism , Male , Mice , Microscopy, Electron/instrumentation , Microscopy, Electron/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Pancreas/cytology , Pancreatectomy , Pancreatitis/chemically induced , Pancreatitis/surgery , Rats , Secretory Vesicles/pathology
11.
Autophagy ; 14(6): 925-929, 2018.
Article in English | MEDLINE | ID: mdl-29938597

ABSTRACT

Recently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.


Subject(s)
Autophagy , Biomedical Research , Inflammation/pathology , International Cooperation , Research Personnel , Congresses as Topic , Information Dissemination
12.
EMBO J ; 36(14): 2018-2033, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28550152

ABSTRACT

The double-membrane-bound autophagosome is formed by the closure of a structure called the phagophore, origin of which is still unclear. The endoplasmic reticulum (ER) is clearly implicated in autophagosome biogenesis due to the presence of the omegasome subdomain positive for DFCP1, a phosphatidyl-inositol-3-phosphate (PI3P) binding protein. Contribution of other membrane sources, like the plasma membrane (PM), is still difficult to integrate in a global picture. Here we show that ER-plasma membrane contact sites are mobilized for autophagosome biogenesis, by direct implication of the tethering extended synaptotagmins (E-Syts) proteins. Imaging data revealed that early autophagic markers are recruited to E-Syt-containing domains during autophagy and that inhibition of E-Syts expression leads to a reduction in autophagosome biogenesis. Furthermore, we demonstrate that E-Syts are essential for autophagy-associated PI3P synthesis at the cortical ER membrane via the recruitment of VMP1, the stabilizing ER partner of the PI3KC3 complex. These results highlight the contribution of ER-plasma membrane tethers to autophagosome biogenesis regulation and support the importance of membrane contact sites in autophagy.


Subject(s)
Autophagosomes/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Organelle Biogenesis , Phosphatidylinositol Phosphates/metabolism , Animals , Carrier Proteins/metabolism , Dogs , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Membrane Proteins/metabolism , Synaptotagmins/metabolism
13.
Clin Sci (Lond) ; 131(8): 673-687, 2017 Apr 25.
Article in English | MEDLINE | ID: mdl-28188238

ABSTRACT

The aim of the present study was to demonstrate the role of autophagy and incretins in the fructose-induced alteration of ß-cell mass and function. Normal Wistar rats were fed (3 weeks) with a commercial diet without (C) or with 10% fructose in drinking water (F) alone or plus sitagliptin (CS and FS) or exendin-4 (CE and FE). Serum levels of metabolic/endocrine parameters, ß-cell mass, morphology/ultrastructure and apoptosis, vacuole membrane protein 1 (VMP1) expression and glucose-stimulated insulin secretion (GSIS) were studied. Complementary to this, islets isolated from normal rats were cultured (3 days) without (C) or with F and F + exendin-4 or chloroquine. Expression of autophagy-related proteins [VMP1 and microtubule-associated protein light chain 3 (LC3)], apoptotic/antiapoptotic markers (caspase-3 and Bcl-2), GSIS and insulin mRNA levels were measured. F rats developed impaired glucose tolerance (IGT) and a significant increase in plasma triacylglycerols, thiobarbituric acid-reactive substances, insulin levels, homoeostasis model assessment (HOMA) for insulin resistance (HOMA-IR) and ß-cell function (HOMA-ß) indices. A significant reduction in ß-cell mass was associated with an increased apoptotic rate and morphological/ultrastructural changes indicative of autophagic activity. All these changes were prevented by either sitagliptin or exendin-4. In cultured islets, F significantly enhanced insulin mRNA and GSIS, decreased Bcl-2 mRNA levels and increased caspase-3 expression. Chloroquine reduced these changes, suggesting the participation of autophagy in this process. Indeed, F induced the increase of both VMP1 expression and LC3-II, suggesting that VMP1-related autophagy is activated in injured ß-cells. Exendin-4 prevented islet-cell damage and autophagy development. VMP1-related autophagy is a reactive process against F-induced islet dysfunction, being prevented by exendin-4 treatment. This knowledge could help in the use of autophagy as a potential target for preventing progression from IGT to type 2 diabetes mellitus.


Subject(s)
Autophagy/drug effects , Diet/adverse effects , Fructose/pharmacology , Incretins/pharmacology , Insulin-Secreting Cells/drug effects , Membrane Proteins/physiology , Animals , Autophagy/physiology , Body Weight , Cells, Cultured , Drug Evaluation, Preclinical/methods , Energy Intake , Exenatide , Fructose/administration & dosage , Glucose Intolerance/etiology , Glucose Intolerance/pathology , Glucose Intolerance/prevention & control , Glucose Tolerance Test , Hypoglycemic Agents/pharmacology , Insulin/biosynthesis , Insulin/genetics , Insulin-Secreting Cells/ultrastructure , Male , Microscopy, Electron , Peptides/pharmacology , RNA, Messenger/genetics , Rats, Wistar , Sitagliptin Phosphate/pharmacology , Venoms/pharmacology
14.
Article in English | MEDLINE | ID: mdl-25324830

ABSTRACT

The oncogene-induced senescence is emerging as a potent tumor suppressor mechanism and as a possible therapeutic target. Macroautophagy is intimately linked to the senescence condition setup, although its role has not been elucidated yet. Here, we discuss up-to-date concepts of senescence-related macroautophagy and evaluate the current trend of this growing research field, which has relevance in future perspectives toward therapeutic options against cancer.

16.
Biomed Res Int ; 2014: 926729, 2014.
Article in English | MEDLINE | ID: mdl-25197670

ABSTRACT

Autophagy is a highly regulated-cell pathway for degrading long-lived proteins as well as for clearing cytoplasmic organelles. Autophagy is a key contributor to cellular homeostasis and metabolism. Warburg hypothesized that cancer growth is frequently associated with a deviation of a set of energy generation mechanisms to a nonoxidative breakdown of glucose. This cellular phenomenon seems to rely on a respiratory impairment, linked to mitochondrial dysfunction. This mitochondrial dysfunction results in a switch to anaerobic glycolysis. It has been recently suggested that epithelial cancer cells may induce the Warburg effect in neighboring stromal fibroblasts in which autophagy was activated. These series of observations drove to the proposal of a putative reverse Warburg effect of pathophysiological relevance for, at least, some tumor phenotypes. In this review we introduce the autophagy process and its regulation and its selective pathways and role in cancer cell metabolism. We define and describe the Warburg effect and the newly suggested "reverse" hypothesis. We also discuss the potential value of modulating autophagy with several pharmacological agents able to modify the Warburg effect. The association of the Warburg effect in cancer and stromal cells to tumor-related autophagy may be of relevance for further development of experimental therapeutics as well as for cancer prevention.


Subject(s)
Autophagy , Glycolysis , Neoplasms/metabolism , Neoplasms/pathology , Humans , Models, Biological
17.
Autophagy ; 9(6): 933-5, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23558782

ABSTRACT

We have elucidated a novel mechanism through which the autophagy-specific class III phosphatidylinositol 3-kinase (PtdIns3K) complex can be recruited to the PAS in mammalian cells, through the interaction between BECN1 and the vacuole membrane protein 1 (VMP1), an integral autophagosomal membrane protein. This interaction involves the binding between the C-terminal 20 amino acids of the VMP1 hydrophilic domain, which we have named the VMP1 autophagy-related domain (VMP1-AtgD), and the BH3 domain of BECN1. The association between these two proteins allows the formation of the autophagy-specific PtdIns3K complex, which activity favors the generation of phosphatidylinositol-3-phosphate (PtdIns3P) and the subsequent association of the autophagy-related (ATG) proteins, including ATG16L1, with the phagophore membranes. Therefore, VMP1 regulates the PtdIns3K activity on the phagophore membrane through its interaction with BECN1. Our data provide a novel model describing one of the key steps in phagophore assembly site (PAS) formation and autophagy regulation, and positions VMP1 as a new interactor of the autophagy-specific PtdIns3K complex in mammalian cells.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases/metabolism , Membrane Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Enzyme Activation , Humans , Models, Biological , Protein Binding
18.
Sci Rep ; 3: 1055, 2013.
Article in English | MEDLINE | ID: mdl-23316280

ABSTRACT

The Vacuole Membrane Protein 1 -VMP1- is a pancreatitis-associated transmembrane protein whose expression triggers autophagy in several human diseases. In the current study, we unveil the mechanism through which this protein induces autophagosome formation in mammalian cells. We show that VMP1 autophagy-related function requires its 20-aminoacid C-terminus hydrophilic domain (VMP1-AtgD). This is achieved through its direct binding to the BH3 motif of Beclin 1 leading to the formation of a complex with the Class III phosphatidylinositol-3 kinase (PI3K) hVps34, a key positive regulator of autophagy, at the site where autophagosomes are generated. This interaction also concomitantly promotes the dissociation of Bcl-2, an autophagy inhibitor, from Beclin 1. Moreover, we show that the VMP1-Beclin 1-hVps34 complex favors the association of Atg16L1 and LC3 with the autophagosomal membranes. Collectively, these findings reveal that VMP1 expression recruits and activates the Class III PI3K complex at the site of autophagosome formation during mammalian autophagy.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Autophagy/physiology , Membrane Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/chemistry , Beclin-1 , Cell Line , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Membrane Proteins/chemistry , Mice , Multiprotein Complexes/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Small Ubiquitin-Related Modifier Proteins/metabolism
19.
Int J Cell Biol ; 2012: 396705, 2012.
Article in English | MEDLINE | ID: mdl-22550490

ABSTRACT

Timing is everything. That's especially true when it comes to the activation of enzymes created by the pancreas to break down food. Pancreatic enzymes are packed in secretory granules as precursor molecules called zymogens. In physiological conditions, those zymogens are activated only when they reach the gut, where they get to work releasing and distributing nutrients that we need to survive. If this process fails and the enzymes are prematurely activated within the pancreatic cell, before they are released from the gland, they break down the pancreas itself causing acute pancreatitis. This is a painful disease that ranges from a mild and autolimited process to a severe and lethal condition. Recently, we demonstrated that the pancreatic acinar cell is able to switch on a refined mechanism that could explain the autolimited form of the disease. This is a novel selective form of autophagy named zymophagy, a cellular process to specifically detect and degrade secretory granules containing activated enzymes before they can digest the organ. In this work, we revise the molecules and mechanisms that mediate zymophagy, a selective autophagy of secretory granules.

20.
Pancreatology ; 12(1): 1-7, 2012.
Article in English | MEDLINE | ID: mdl-22487466

ABSTRACT

Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents and plays important physiological roles in human health and disease. It has been proposed that autophagy plays an important role both in tumor progression and in promotion of cancer cell death, although the molecular mechanisms responsible for this dual action of autophagy in cancer have not been elucidated. Pancreatic ductal adenocarcinoma is one of the most aggressive human malignancies with 2-3% five-year survival rate. Its poor prognosis has been attributed to the lack of specific symptoms and early detection tools, and its relatively refractory to traditional cytotoxic agents and radiotherapy. Experimental evidence pointed at autophagy as a pancreatic cancer cell mechanism to survive under adverse environmental conditions, or as a defective programmed cell death mechanism that favors pancreatic cancer cell resistance to treatment. Here, we consider several phenotypical alterations that have been related to increase or decrease the autophagic process in pancreatic tumor cells. We specially review autophagy as a cell death mechanism in response to chemotherapeutic drugs.


Subject(s)
Autophagy , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Animals , Autophagy/drug effects , Capecitabine , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm , Fluorouracil/analogs & derivatives , Fluorouracil/therapeutic use , Humans , Prognosis , Receptor for Advanced Glycation End Products , Receptors, Immunologic/physiology , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL
...